

Mechanical Engineering Department

Academic Year – 2019-20	Class: TE
Semester – II	Date : 17/1/2020
CO: CO2	PO: PO1, PO2, PO7,PO10, PO12

Innovative Teaching Methods

Title of Innovation method/activity: Innovative Teaching Learning Method (Industry based Case study) for study of Solar powered vapour absorption refrigeration system

- 1. Name of Faculty: Dr. S.B.Sonawane
- 2. Subject: Refrigeration & Air Conditioning
- 3. Objective of Method:
 - I. Understand the working of Solar powered vapour absorption refrigeration system
 - II. Create the awareness of energy saving using solar energy for refrigeration application
 - III. Describe the use of solar powered VAS for different applications like paint shop in automobile industry, hospitals, dairy etc
 - IV. Understand the cost benefit analysis using system performance and capital cost.

4. Topic Covered through Activity:

Solar powered vapour absorption refrigeration system

5. Description of method with Benefits (8 – 10 lines):

Layout and working of solar powered vapour absorption system installed at automobile industry for producing refrigeration effect in paint shop and solar steam based VAS for air conditioning application have been demonstrated by the faculty member in the class room. Faculty member has explained the evaluation of payback period of system using annual benefits (measured in terms of electricity saving) and capital cost of plant. Quiz is conducted on the present topic to assess the topic understanding. Benefits of method:

- Students can learn better from examples than from logical development starting with basic principles. The use of case studies can therefore be a very effective classroom technique.
- It helps students to understand the practical aspects of system
- It teaches students to assess techno-economical viability of realistic projects
- Students are actively engaged in figuring out the principles by abstracting from the examples.

The method:

Faculty member has prepared the presentation on 'Solar powered vapour absorption refrigeration system' (shown in Fig. 1) based on his industrial visit and data published in Sun Focus technical Magazine of Ministry of New and Renewable Energy Dept. of Govt. of India. Working and practical aspects of the system have been explained in the class room. Thermodynamic processes like heat absorption, evaporation, condensation, expansion and absorption have been described. Quiz is conducted on fundamentals of VAS, desirable properties and practical aspects and performance of the students have been assessed.

Roles and Responsibilities

- Teacher
 - Develop the awareness among the students about the industrial applications of 'Solar powered vapour absorption refrigeration system (VAS)'
 - Prepare presentation on the present topic.
 - Provide the study material and appropriate guide lines at every stage to the students
 - Remain available during the completion of task.
 - Prepare assessment methodology.
- Student
 - Learn the present topic and go through the presentation material
 - Understand the practical aspects of system
 - Learn the system performance and payback analysis using available data
 - Answer the questions asked in Quiz

6. Assessment Tools

Quiz is conducted in the class room after learning the present topic. Questions of the Quiz and corresponding right options are as follows. Each question carries one mark. Maximum marks for the Quiz are 10.

1	Compared to compression systems, absorption systems offer the benefits of						
a	Higher COPs						
b	Lower re	efrigeration	n temperat	ures			
c	Possiblity of using low-grade energy sources						
d	All of the above						
Right	Option	с					
2	2 Absorption of the refrigerant by the absorbent in a vapour absorption refrigeration system is 2 accompanied by						
а	Absorption of heat						
b	Release of heat						
c	No thermal effects						
d	Reduction in volume						

Right	Option	а				
	• P • • • •					<u>.</u>
	Anabear	ntion gust	om consis	ting of only two of	agad yaggal	a
2	All ausor	ption syst	ciii consis			
3						
	a	• • •				
a	Can prov	ide contin	uous refri	geration		
b	Provides	refrigerat	ion interm	uttently		
c	Can work	c on solar	energy alo	one		
d	Has no p	ractical ap	plication	Γ		
Right	Option	b,c				
	The conv	entional,	continuou	sly operating singl	e stage vap	our absorption refrigeration system
4					• •	
а	Requires	only ther	nal energy	v as input		
h	Uses a th	ermal con	nressor i	n place of mechani	cal compre	ssor
C C	Does not	require a	condenser	·	eur compre	
	Consists	of two evi	pansion ve	lvec		
u Dight	Ontion	h d				
Rigin	Option	0,u				
	F '1	1 C'	. 1	1 . • .	_	
_	For an 1d	eal refrige	erant-absoi	rbent mixture		
5						
	1					
a	There is a	neither exp	pansion no	or contraction upor	n mixing	
b	The mixi	ng proces	s is exothe	ermic		
c	The mixi	ng proces	s is endoth	hermic		
d	Obeys Ra	aoult's law	in liquid	phase and Dalton'	<u>s law in vap</u>	pour phase
Right	Option	a,d				
	For a refr	igerant - a	absorbent	mixture with a neg	gative devia	tion from Raoult's law
6						
а	The mixi	ng proces	s is exothe	ermic		
h	The mixi	ng proces	s is endoth	hermic		
	The actua	al equilibr	ium tempe	erature will be less	than that r	redicted by Raoult's law
	d The actual equilibrium temperature will be more than that predicted by Rabult's law					
U Diaht	Ontion		ium tempe			
rigiit	Option	a,u				

	Refrigeration capacity of VAS plant at Mahindra & Mahindra Chakan is					
7						
a	120 TR wi	th double	e effect			
b	100 TR wi	th double	e effect			
С	80 TR with	h single e	effect			
d	150 TR wi	th single	effect			1
Right	t Option	а				
	VAS chilli	ng plant	installed a	at Mahindra & N	Aahindra Cha	akan used for
8						
a 1	Machine s	hop				
b	Paint shop					
C	Quality de	partment				
d Dielet	R&D depa	rtment				
Right	Option	b				
	Which of t	he follow	vina stata	mente are true		
0	w men or t		ving state.	ments are true		
a	Water - lit	hium svs	tems are i	used for refriger	ation applica	tions above 0° C only
h	Ammonia	- water s	vstems ca	n be used for re	frigeration ar	$polications below 0^{\circ}C only$
C C	Small amn	nonia - w	vater syste	ms are used in c	lomestic refr	igerators
d	d Small water - lithium bromide systems are used in room air conditioners					
Right	Option	a				
Tugin	option					
	Solar stear	n based '	VAS syste	em installed at N	Iuni Seva As	hram Vadodara for
10	Solar stear	n based `	VAS syste	em installed at M	Iuni Seva As	hram Vadodara for
10	Solar stear	n based `	VAS syste	em installed at M	Iuni Seva As	hram Vadodara for
10	Solar stear	n based `	VAS syste	em installed at N	Iuni Seva As	hram Vadodara for
10 a	Solar stear	n based `	VAS syste	em installed at N	Iuni Seva As	hram Vadodara for
10 	Solar stear Preservatio Heating pu	n based ` on of foo irpose	VAS syste	em installed at N	Iuni Seva As	hram Vadodara for
10 a b c	Solar stear Preservatio Heating pu Agro proce	n based V on of foo irpose essing	VAS syste	em installed at N	Iuni Seva As	hram Vadodara for
10 a b c d	Solar stear Preservatio Heating pu Agro proce Air conditi	n based V on of foo irpose essing ioning	VAS syste	em installed at N	Iuni Seva As	hram Vadodara for
10 a b c d Right	Solar stear Preservation Heating put Agro process Air condition Option	n based V on of foo irpose essing ioning d	d	em installed at N	Iuni Seva As	hram Vadodara for

6. Evaluation sheet of attendee

Sr. No.	Name of students	Score out of 10
1	KISHOR SANJAY AHIRE	9
2	KOMAL FAKIRA AHIRE	6
3	MAYUR PRAKASH AHIRE	8
4	SAGAR JAGANNATH AHIRE	8
5	APURV SURESH GAYKHE	6
6	PRATIKSHA SUBHASH BACHHAV	5
7	YADNESH GOVINDRAO BASTE	10
8	KARTIKKUMAR RAJARAM BHAND	6
9	AKASH SANJAY BHANDARE	7
10	SATYAM ARUN BIRAR	10
11	PRIYANKA DNYANESHWAR BODKE	8
12	DHANANJAY MHASU BORADE	7
13	SHRADDHA PANDHARINATH BORSE	7
14	RUPESHKUMAR SURESH BURHADE	10
15	GAURAV VISHWAS CHAUDHARI	10
16	PRAFULLA DATTATRAY CHAUDHARI	7
17	RAHUL NAVNATH CHAURE	9
18	KETAN UMESH CHAVAN	8
19	SHREYAS SHARADRAO DANGE	9
20	GAURAV MANIK DANGRE	9
21	ATHARVA KAMALESH DARANGE	7
22	KETAN ANIL DASHPUTE	6
23	SAHIL SANJAY DIWATE	9
24	PRATIK GAUTAM GAIKWAD	10
25	PAVAN HEMANT GANGURDE	8
26	PUSHPAK MEGHRAJ GANGURDE	7
27	ROSHAN RAJIV GANGURDE	10
28	SAURABH DNYANESHWAR GITE	7
29	BHUSHAN BAPURAO GUNJAL	10
30	DANISH PARVEZ HASAN	8
31	CHANDAN THAKURSINGH HOLARIA	8
32	AJINKYA SHANTARAM INGLE	6
33	PRATIK BABAJI JADHAV	6
34	RITESH PREMCHAND JADHAV	8
35	TEJASWINI TRIBHUVAN JADHAV	9
36	VIKAS SUDAM JADHAV	8
37	APOORVA RAJENDRA JAGTAP	9
38	SHUBHAM RAJESH JAGTAP	10
39	VISHAL ANAND JANGID	10
40	PARIMAL SANJAY JOSHI	8
41	MAYUR RAJENDRA KADAM	8
42	JAYESH MANOJ KALANTRI	10
43	SANKET DIPAK KALE	8

44	OMKAR SUDHAKAR KANDEKAR	9
45	AKASH KAILAS KARDILE	9
46	ASMITA ANNASAHEB KHAIRNAR	8
47	GAURAV ANIL KOTHAWADE	7
48	MANISH SUBHASH KSHIRSAGAR	7
49	KUNAL SURESH WARKE	10
50	JAYESH GHANSHYAM LOLAGE	7
51	SUNIL CHANAPPA MALI	8
52	GANDHALI SUNIL MHALAS	10
53	SHRIRAM KAILAS MHASANE	8
54	AJAY RAJENDRA MORE	5

7. For review and critique contact: e-mail address of faculty and HOD <u>sonawane.sandipkumar@kbtcoe.org</u>, <u>hod.mech@kbtcoe.org</u>

Gonadane

Dr. S.B.Sonawane Subject In charge

Dr. A.B.Kakade NBA Coordinator

Ganadane

Dr. S.B.Sonawane Module Coordinator

Dr. V.C.Shewale HoD