Permanently Affiliated to Savitribai Phule Pune University Vide Letter No: CA/1542 & Approved by AICTE New Delhi Vide Letter No: 740-89-32 (E) ET/98 AISHE Code - C-41622

# **Mechanical Engineering Department**

# **Innovative Teaching Method - Report**

| Academic Year – 2020-21 | Class: TE                         |
|-------------------------|-----------------------------------|
| Semester – I            | Date: 12/12/2020                  |
| CO: CO4, CO6            | PO: PO1, PO2, PO3, PO4, PO9,PO10, |
|                         | PO12                              |

- 1. Title of Innovation method/activity: Think-Pair-Share
- 2. Link shared to the students: <a href="https://forms.gle/9KPvY2eSrmsVbjRD9">https://forms.gle/9KPvY2eSrmsVbjRD9</a>
- 3. Name of Faculty: Dr. S.B.Sonawane
- **4.** Course: Heat Transfer (C302)
- **5.** Objective of Method
  - a. Create the awareness of forced convection and heat exchanger
  - b. Analyze forced convection and heat exchanger

- c. Compute pressure drop and pumping power
- d. Determine the performance of heat exchanger

## 6. Topic Covered through Activity

Analysis and performance evaluation of heat exchangers

## 7. Description of method with Benefits (8 - 10 lines)

## **Description of method**

Monitor and support students as they work through the following in this method:

**T**: (Think) Teachers begin by asking a specific question about the text. Students "think" about what they know or have learned about the topic.

**P**: (Pair) Each student should be paired with another student or a small group.

**S**: (Share) Students share their thinking with their partner. Teachers expand the "share" into a whole-class discussion.

#### **Benefits of method**

- It helps students to think individually about a topic or answer to a question.
- It teaches students to share ideas with classmates and builds oral communication skills.
- It helps focus attention and engage students in comprehending the reading material.
- The Think-Pair-Share activity gives students the opportunity to feel more comfortable sharing their thoughts.

## 8. Roles and Responsibilities

#### Teacher

- Develop the awareness among the students about the industrial applications of heat exchanger
- Selection of heat transfer application (engine oil cooler is selected in this method).
- Provide the study material on working, analysis and performance evaluation of heat exchanger and appropriate guide lines at every stage
- Remain available during the completion of task.
- Prepare assessment methodology.

#### Student

- Go through all the material provided on heat exchanger
- Once topic assigned, understand it and solve independently. After this each student should be paired with another student or a small group and discuss any doubt with his partner. Then students have to discuss individually within the group.
- Actively participate in group and contribute by means of discussion

#### Group

- Form the group of members as per the guidelines by teachers.
- Understand and discuss to finalize the best solution for the assigned task.
- Assign the work within the group to achieve the task within stipulated time period

## 9. Assessment Tools

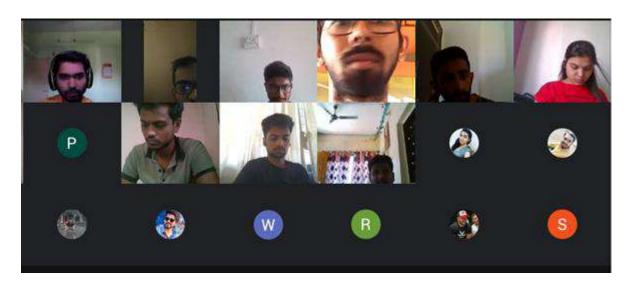
| Q. No. | Portfolio                                                                | Marks |  |  |
|--------|--------------------------------------------------------------------------|-------|--|--|
| 1.     | Engine oil cooler assembly details                                       |       |  |  |
| 1.     | An engine oil cooler consists of a bundle of 25 smooth tubes, each of    | 2M    |  |  |
|        | length L = 2.5 m and diameter D = 10 m. If oil at 300 K and a total flow |       |  |  |
|        | rate of 24 kg/s is fully developed flow through the tubes, what is the   |       |  |  |
|        | pressure drop?                                                           |       |  |  |
| 2.     | Pumping power calculation                                                |       |  |  |
| 2.     | Using same data of Q.1, what is the pump power requirement               | 3M    |  |  |
| 3.     | Think                                                                    |       |  |  |
| 3.     | On your own, write the procedure to solve the problem given in Q.1:      | 4M    |  |  |
| 4.     | Pair                                                                     |       |  |  |
| T.     | Discuss your procedure to solve the above problem with a partner. Put    | 3M    |  |  |
|        | a check by any procedure, above, that your partner also wrote down.      |       |  |  |
|        | Then, write down procedure your partner had that you did not have:       |       |  |  |
| 5.     | Share                                                                    |       |  |  |
| J.     | Share: Review all of your procedure and circle the one you think is      | 3M    |  |  |
|        | most important. One of you will share this procedure with the whole      |       |  |  |
|        | group. As you listen to the procedure of the whole group, write down     |       |  |  |
|        | the most appropriate procedure to solve the problems                     |       |  |  |

| Q. No. | Portfolio                                                          | Marks |
|--------|--------------------------------------------------------------------|-------|
| 6.     | Concentric tube heat exchanger                                     |       |
|        | Consider a concentric tube heat exchanger with an area of 50 Sq. m | 1M    |
|        | operating under the following conditions. Determine the outlet     |       |
|        | temperature of the hot fluid.                                      |       |

| 7.  | Using the data of Q.6, What you think?                                  | 1M |
|-----|-------------------------------------------------------------------------|----|
| 7.  | Is the heat exchanger operating in parallel flow or counter flow        |    |
| 8.  | Using the data of Q.6, Calculate the overall heat transfer coefficient. | 1M |
| 9.  | Using the data of Q.6, Calculate the effectiveness of this exchanger.   | 1M |
| 10  | Using the data of Q.6, what would be the effectiveness of this          | 1M |
| 10  | exchanger if its length were made very large?                           |    |
| 11. | Think                                                                   |    |
| 11. | On your own, write the procedure to solve the problem given in Q.6      | 4M |
| 12. | Pair                                                                    |    |
| 12. | Discuss your procedure to solve the above problem with a partner. Put   | 3M |
|     | a check by any procedure, above, that your partner also wrote down.     |    |
|     | Then, write down procedure your partner had that you did not have:      |    |
| 13. | Share                                                                   |    |
| 13. | Review all of your procedure and circle the one you think is most       | 3M |
|     | important. One of you will share this procedure with the whole group.   |    |
|     | As you listen to the procedure of the whole group, write down the most  |    |
|     | appropriate procedure to solve the problems                             |    |

# 10. Evaluation sheet of attendee

| Sr. No. | Roll No. | Name of students         | Score out of 30 |
|---------|----------|--------------------------|-----------------|
| 1       | 144      | Harshal Sukhdev Mundane  | 24              |
| 2       | 138      | Samyak Mandar Vaidya     | 30              |
| 3       | 107      | Karan Pund               | 30              |
| 4       | 117      | Avinash Raghunath Savale | 30              |
| 5       | 126      | Shingote Pragati Ramnath | 30              |
| 6       | 116      | Vivek ramdas sangale     | 30              |
| 7       | 112      | Pratik Raosaheb Rote     | 30              |
| 8       | 110      | Ranade Aditya Shivaji    | 30              |


| 9  | 123 | Rohit Raju Shinde           | 27 |
|----|-----|-----------------------------|----|
| 10 | 118 | Rishikesh Sawant            | 30 |
| 11 | 114 | Yashwant Salunke            | 30 |
| 12 | 142 | Pranit Yawalkar             | 27 |
| 13 | 100 | Shubham Patil               | 24 |
| 14 | 135 | Vinay Rajendra Thete        | 30 |
| 15 | 120 | Harsh Sunil Shinde          | 27 |
| 16 | 136 | Thok Nikita kailas          | 30 |
| 17 | 102 | Vaibhavi Suresh Patil       | 30 |
| 18 | 125 | Ujwala Mahesh Shinde        | 30 |
| 19 | 133 | Adarsh Sanjay Thakur        | 27 |
| 20 | 115 | Gaurav Sharad Sanap         | 30 |
| 21 | 128 | Priyanka dhondiram shirsath | 30 |
| 22 | 89  | Ajinkya Dilip Pagar         | 18 |
| 23 | 143 | Akshay Sanjay Zope          | 27 |
| 24 | 141 | Saurabh Warungse            | 30 |

# 11. Impact Analysis

| Sr. No.                               | 3- High/Excellent | 2 - Moderate | 1- Slight/Poor |
|---------------------------------------|-------------------|--------------|----------------|
|                                       |                   | /Average     |                |
| 1. Did you understand and cover the   | 84.6%             | 15.4%        |                |
| objective of the activity?            | 04.070            | 13.470       |                |
| 2. Do you find that methodology is    |                   |              |                |
| helpful to cover the content beyond   | 69.2%             | 30.8%        |                |
| syllabus?                             |                   |              |                |
| 3. Does this helps you for building a | 69.2%             | 23.1%        | 7.7%           |
| good team?                            | 09.270            | 23.170       | 7.770          |
| 4. Does the content covered are       | 53.8%             | 46.2%        |                |
| relevant and will be helpful as a     | 33.670            | 40.270       |                |

| Life - long learning?           |       |        |  |
|---------------------------------|-------|--------|--|
|                                 |       |        |  |
| 5. Can you want to conduct such | 76.9% | 23.1%  |  |
| activity again?                 | 70.9% | 23.170 |  |

## 12. Activity Picture



# 13. For review and critique contact: e-mail address of faculty and HOD

sonawane.sandipkumar@kbtcoe.org, hod.mech@kbtcoe.org

Dr. S.B.Sonawane

KonaDar

Subject In charge

Dr. S.B.Sonawane

KonaDan

Module Coordinator

Dr. A.B.Kakade

**NBA** Coordinator

Dr. V.C.Shewale

HoD